Part Number Hot Search : 
14150 Z5225 ST72T IDT72V1 C1208 FF0300J 12816 224106
Product Description
Full Text Search
 

To Download MIC862 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  march 2002 1 MIC862 MIC862 micrel MIC862 dual ultra low power op amp in sot23-8 final information general description the MIC862 is a dual low power operational amplifier in sot23-8 package. it is designed to operate in the 2v to 5v range, rail-to-rail output, with input common-mode to ground. the MIC862 provides 3mhz gain-bandwidth product while consuming only a 31 a/channel supply current. with low supply voltage and sot23-8 packaging, MIC862 provides two channels as general-purpose amplifiers for portable and battery-powered applications. its package pro- vides the maximum performance available while maintaining an extremely slim form factor. the minimal power consump- tion of this ic maximizes the battery life potential. features sot23-8 packaging 3mhz gain-bandwidth product 5mhz, ?db bandwidth ?1 a supply current rail-to-rail output ground sensing at input (common mode to gnd) drive large capactive loads unity gain stable applications portable equipment medical insrument ?das pagers cordless phones consumer electronics micrel, inc. ?1849 fortune drive ?san jose, ca 95131 ?usa ?tel + 1 (408) 944-0800 ?fax + 1 (408) 944-0970 ?http://www.mic rel.com teeny is a trademark of micrel, inc. ordering information part number marking ambient temp. range package MIC862bm8 a34 ?0 c to +85 c sot23-8 typical application 50 ? 0.1 f 10 f 100pf 510 ? 1 / 2 MIC862 1 / 2 MIC862 v out v+ rf peak detector circuit for am radio
MIC862 micrel MIC862 2 march 2002 pin description pin number pin name pin function 1 outa output: amplifier a output 2 ina amplifier a inverting (input) 3 ina+ amplifier a non-inverting (input) 4v negative supply 5 inb+ amplifier b non-inverting (input) 6 inb amplifier b inverting (input) 7 outb output: amplifier b output 8 v+ positive supply pin configuration 1 outa ina ina+ v 8v+ outb inb inb+ 7 6 5 2 3 4 sot23-8 (m8)
march 2002 3 MIC862 MIC862 micrel absolute maximum ratings (note 1) supply voltage (v v+ v ) ......................................... +6.0v differential input voltage ( ? v in+ v in ? ), note 4 ...... +6.0v input voltage (v in+ v in ) .................. v + + 0.3v, v 0.3v lead temperature (soldering, 5 sec.) ....................... 260 c output short circuit current duration .................. indefinite storage temperature (t s ) ........................................ 150 c esd rating, note 3 operating ratings (note 2) supply voltage (v+ v ) ............................. +2v to +5.25v ambient temperature range ..................... 40 c to +85 c package thermal resistance .......................... pcb boards ja (using 4 layer pcb) ................................. 100 c/w jc (using 4 layer pcb) ................................... 70 c/w electrical characteristics v+ = +2v, v = 0v, v cm = v+/2; r l = 500k ? to v+/2; t a = 25 c, unless otherwise noted. bold values indicate 40 c t a +85 c. symbol parameter condition min typ max units v os input offset voltage ? 0.1 6 mv 55 differential offset voltage 0.5 mv input offset voltage temp coefficient 6 v/ c i b input bias current 10 pa i os input offset current 5pa v cm input voltage range (from v ) cmrr > 50db 0.5 1v cmrr common-mode rejection ratio 0 < v cm < 1v 45 75 db psrr power supply rejection ratio supply voltage change of 2v to 2.7v 50 78 db a vol large-signal voltage gain r l = 5k ? , v out = 1.4v p-p 66 74 db r l = 100k ? , v out = 1.4v p-p 75 89 db r l = 500k ? , v out = 1.4v p-p 85 100 db v out maximum output voltage swing r l = 5k ? v+?0mv v+ 55mv v r l = 500k ? v+?mv v+ 1.4mv v v out minimum output voltage swing r l = 5k ? v +14mv v? 20mv mv r l = 500k ? v +0.85mv v? 3mv mv gbw gain-bandwidth product r l = 20k ? , c l = 2pf, av = 11 2.1 mhz pm phase margin r l = 20k ? , c l = 2pf, av = 11 57 bw 3db bandwidth r l = 1m ? , c l = 2pf, av = 1 4.2 mhz sr slew rate r l = 1m ? , c l = 2pf, av = 1, 2 v/ s positive slew rate = 1.5v/ s i sc short-circuit output current source 1.8 2.6 ma sink 1.5 2.2 ma i s supply current (per op amp) no load 27 43 a channel-to-channel crosstalk note 5 100 db v+ = +2.7v, v = 0v, v cm = v+/2; r l = 500k ? to v+/2; t a = 25 c, unless otherwise noted. bold values indicate 40 c t a +85 c. v os input offset voltage ? 0.1 6 mv 55 differential offset voltage 0.5 mv input offset voltage temp coefficient 6 v/ c i b input bias current 10 pa i os input offset current 5pa v cm input voltage range cmrr > 60db 1 1.8 v cmrr common-mode rejection ratio 0 < v cm < 1.35v 65 83 db
MIC862 micrel MIC862 4 march 2002 symbol parameter condition min typ max units psrr power supply rejection ratio supply voltage change of 2.7v to 3v 60 85 db a vol large-signal voltage gain r l = 5k ? , v out = 2v p-p 65 77 db r l = 100k ? , v out = 2v p-p 80 90 db r l = 500k ? , v out = 2v p-p 90 101 db gbw gain-bandwidth product r l = 20k ? , c l = 2pf, av = 11 2.3 mhz pm phase margin r l = 20k ? , c l = 2pf, av = 11 50 bw 3 db bandwidth r l = 1m ? , c l = 2pf, av = 1 4.2 mhz sr slew rate r l = 1m ? , c l = 2pf, av = 1 3 v/ s positive slew rate 1.5v/ s i sc short-circuit output current source 4.5 6.3 ma sink 4.5 6.2 ma i s supply current (per op amp) no load 28 45 a channel-to-channel crosstalk note 5 120 db v+= +5v, v = 0v, v cm = v+/2; r l = 500k ? to v+/2; t a = 25 c, unless otherwise noted. bold values indicate 40 c t a +85 c. v os input offset voltage ? 0.1 6 mv 55 differential offset voltage 0.5 mv input offset voltage temp coefficient 6 v/ c i b input bias current 10 pa i os input offset current 5pa v cm input voltage range (from v ) cmrr > 60db 3.5 4.1 v cmrr common-mode rejection ratio 0 < v cm < 3.5v, 60 87 db psrr power supply rejection ratio supply voltage change from 3v to 5v 60 92 db a vol large-signal voltage gain r l = 5k ? , v out = 4.8v p-p 65 73 db r l = 100k ? , v out = 4.8v p-p 80 86 db r l = 500k ? , v out = 4.8v p-p 89 96 db v out maximum output voltage swing r l = 5k ? v+?0mv v+ 37mv v r l = 500k ? v+?mv v+ 1.3mv v v out minimum output voltage swing r l = 5k ? v +24mv v? 40mv mv r l = 500k ? v +0.7mv v? 3mv mv gbw gain-bandwidth product r l = 20k ? , c l = 2pf, av = 11 3 mhz pm phase margin 45 bw 3 db bandwidth r l = 1m ? , c l = 2pf, av = 1 5 mhz sr slew rate r l = 1m ? , c l = 2pf, av = 1 4 v/ s positive slew rate 1.8v/ s i sc short-circuit output current source 17 23 ma sink 18 27 ma i s supply current (per op amp) no load 31 47 a channel-to-channel crosstalk note 5 120 db note 1 . exceeding the absolute maximum rating may damage the device. note 2. the device is not guaranteed to function outside its operating rating. note 3. devices are esd sensitive. handling precautions recommended. human body model, 1.5k in series with 100pf. pin 4 is esd sensitiv e note 4. exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to increase. note 5. dc signal referenced to input. refer to typical characteristics graphs for ac performance.
march 2002 5 MIC862 MIC862 micrel 0 4 8 12 16 20 24 28 32 36 40 44 0.9 1.06 1.22 1.38 1.54 1.7 1.86 2.02 2.18 2.34 2.5 short-circuit current (ma) supply voltage ( v) short circuit current vs. suppl y volta g e sinking 85 c 25 c -40 c 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 0 -6 -12 -18 -24 -30 output voltage (v) output current (ma) output voltage vs. output current 25 c -40 c 85 c sourcing v = 2.5v 0 0.135 0.27 0.405 0.54 0.675 0.81 0.945 1.08 1.215 1.35 1.485 012345678910 output voltage (v) output current (ma) output voltage vs. output current sourcing v = 1.35v 25 c 85 c -40 c 0 3 6 9 12 15 18 21 24 27 30 33 0.9 1.06 1.22 1.38 1.54 1.7 1.86 2.02 2.18 2.34 2.5 short-circuit current (ma) supply voltage ( v) short circuit current vs. suppl y volta g e -40 c 25 c sourcing 85 c -1.350 -1.215 -1.080 -0.945 -0.810 -0.675 -0.540 -0.405 -0.270 -0.135 0 0.135 012345678910 output voltage (v) output current (ma) output voltage vs. output current sinking v = 1.35v 85 c 25 c -40 c -2.50 -2.25 -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0 0.25 0 8 16 24 32 40 output voltage (v) output current (ma) output voltage vs. output current sinking v = 2.5v 25 c -40 c 85 c typical characteristics 0 5 10 15 20 25 30 35 40 45 50 55 0.90 1.06 1.22 1.38 1.54 1.70 1.86 2.02 2.18 2.34 2.50 supply current/ch ( a) supply voltage ( v) supply current vs. suppl y volta g e 85 c 25 c -40 c 20 22 24 26 28 30 32 34 36 38 -40 -20 0 20 40 60 80 100 supply current/ch ( a) temperature ( c) supply current/ch vs. temperature v = 2.5v v = 1.35v -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 offset voltage (mv) common-mode voltage (v) offset voltage vs. common-mode voltage -40 c 85 c 25 c v = 2.5v 0 0.5 1 1.5 2 2.5 -1.5 -1 -0.5 0 0.5 1 offset voltage (mv) common-mode voltage (v) offset voltage vs. common-mode volta g e -40 c 85 c 25 c v = 1.35v 0 5 10 15 20 25 30 -40 -20 0 20 40 60 80 100 short-circuit current (ma) temperature ( c) short circuit current vs. temperature v = 1.35v v = 2.5v sourcing 0 5 10 15 20 25 30 35 -40 -20 0 20 40 60 80 100 short-circuit current (ma) temperature ( c) short circuit current vs. temperature v = 1.35v v = 2.5v sinking
MIC862 micrel MIC862 6 march 2002 -50 -40 -30 -20 -10 0 10 20 30 40 50 gain (db) frequency (hz) gain bandwidth and phase mar g in av = 11 v = 1.35v c l = 2pf r l = 1m ? -225 -180 -135 -90 -45 0 45 90 135 180 225 phase ( ) 100k 10m 1m -50 -40 -30 -20 -10 0 10 20 30 40 50 gain (db) frequency (hz) gain bandwidth and phase margin av = 11 v = 2.5v c l = 2pf r l = 1m ? ) 10k 100k 1m 10m -25 -20 -15 -10 -5 0 5 10 15 20 25 gain (db) frequency (hz) gain frequenc y response av = 2 v = 1.35v c l = 2pf r l = 5k ? r f = 20k ? -225 -180 -135 -90 -45 0 45 90 135 180 225 phase ( ) 10k 100k 1m 10m -25 -20 -15 -10 -5 0 5 10 15 20 25 gain (db) frequency (hz) gain frequency response av = 2 v = 2.5v c l = 2pf r l = 5k ? r f = 20k ? ) 10k 100k 1m 10m -30 -25 -20 -15 -10 -5 0 5 10 15 20 gain (db) frequency (hz) unity gain frequency response av = 1 v = 1.35v c l = 2pf r l = 5k ? -270 -225 -180 -135 -90 -45 0 45 90 135 180 phase ( ) 1k 10k 100k 1m 10m phase gain -30 -25 -20 -15 -10 -5 0 5 10 15 20 gain (db) frequency (hz) unity gain frequency response av = 1 v = 2.5v c l = 2pf r l = 5k ? ) 1k 10k 100k 1m 10m phase gain -60 -55 -50 -45 -40 -35 -30 10 100 1000 crosstalk (db) frequency (khz) channel to channel crosstalk 0 10 20 30 40 50 60 70 80 90 100 psrr (db) frequency (hz) psrr vs. frequenc y 1 10 100 1k 10k 100k 1m 10m v = 1.35v 0 10 20 30 40 50 60 70 80 90 100 psrr (db) frequency (hz) psrr vs. frequenc y 1 10 100 1k 10k 100k 1m 10m v = 2.5v -30 -25 -20 -15 -10 -5 0 5 10 15 20 gain (db) frequency (hz) unity bandwidth frequenc y response av = 1 v+ = 1.5v v = 0.5v c l = 1.7pf r l = 5k ? -270 -225 -180 -135 -90 -45 0 45 90 135 180 phase ( ) 10k 100k 1m 10m phase gain -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 -40 -20 0 20 40 60 80 100 offset voltage (mv) temperature ( c) offset voltage vs. temperature v = 2.5v v = 1.35v -50 -40 -30 -20 -10 0 10 20 30 40 50 gain (db) frequency (hz) gain bandwidth and phase mar g in av = 11 v+ = +1.5v v = 0.5v c l = 1.7pf r l = 1m ? -225 -180 -135 -90 -45 0 45 90 135 180 225 phase ( ) 10k 100k 1m 10m
march 2002 7 MIC862 MIC862 micrel small signal response time 500ns/div input 50mv/div output 50mv/div a v = 1 v = 1.35v c l = 1.7pf r l = 1m ? small signal response time 500ns/div input 50mv/div output 50mv/div a v = 1 v = 2.5v c l = 1.7pf r l = 1m ? small signal response time 1 s/div input 50mv/div output 50mv/div a v = 1 v = 1.35v c l = 50pf r l = 500 ? small signal response time 1 s/div input 50mv/div output 50mv/div a v = 1 v = 2.5v c l = 50pf r l = 500 ? small signal response time 500ns/div input 50mv/div output 50mv/div a v = 1 v = 1.35v c l = 1000pf r l = 500 ? small signal response time 500ns/div input 50mv/div output 50mv/div a v = 1 v = 2.5v c l = 1000pf r l = 500 ? functional characteristics
MIC862 micrel MIC862 8 march 2002 small signal pulse response time 500ns/div output 50mv/div input 50mv/div a v = 1 v+ = +1.5v v = 0.5v c l = 1.7pf r l = 1m ?
march 2002 9 MIC862 MIC862 micrel time 5 s/div large signal response a v = 1 v = 1.35v c l = 1.7pf r l = 1m ? output 500mv/div positive slew rate = 1.5v/ s negative slew rate = 2.0v/ s time 5 s/div a v = 1 v = 2.5v c l = 1.7pf r l = 1m ? large signal response output 1v/div positive slew rate = 1.8v/ s negative slew rate = 4.1v/ s large signal response time 5 s/div output 1v/div a v = 1 v = 2.5v c l = 50pf r l = 500 ? positive slew rate = 1.8v/ s negative slew rate = 4.7v/ s time 5 s/div a v = 1 v = 1.35v c l = 50pf r l = 500 ? large signal response output 500mv/div positive slew rate = 1.5v/ s negative slew rate = 2.8v/ s large signal pulse response time 5 s/div output 500mv/div a v = 1 v = 1.35v c l = 1000pf r l = 500 ? positive slew rate = 1.3v/ s negative slew rate = 3.6v/ s large signal pulse response time 5 s/div output 1v/div a v = 1 v = 2.5v c l = 1000pf r l = 500 ? positive slew rate = 1.3v/ s negative slew rate = 3.6v/ s
MIC862 micrel MIC862 10 march 2002 r l c l v+ v large signal pulse response time 5 s/div output 20mv/div a v = 1 v+ = +1.5v v = 0.5v c l = 1.7pf r l = 1m ? positive slew rate = 1.17v/ s negative slew rate = 2.0v/ s rail to rail operation time 250 s/div input 500mv/div output 1v/div a v = 2 v = 1.35v c l = 2pf r l = 1m ? r f = 20k ? ? v = 2.7v p-p rail to rail operation time 250 s/div input 500mv/div output 1v/div a v = 2 v = 2.5v c l = 2pf r l = 1m ? r f = 20k ? ? v = 5v p-p rail to rail operation time 250 s/div input 500mv/div output 1v/div a v = 2 v = 1.35v c l = 2 pf r l = 5k ? r f = 20k ? ? v = 2.7v p-p rail to rail operation time 250 s/div input 1v/div output 2v/div a v = 2 v = 2.5v c l = 2 pf r l = 5k ? r f = 20k ? ? v = 5v p-p
march 2002 11 MIC862 MIC862 micrel applications information power supply bypassing regular supply bypassing techniques are recommended. a 10 f capacitor in parallel with a 0.1 f capacitor on both the positive and negative supplies are ideal. for best perfor- mance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low esl (equivalent series inductance), esr (equivalent series resis- tance). surface-mount ceramic capacitors are ideal. supply and loading resistive considerations the MIC862 is intended for single supply applications config- ured with a grounded load. it is not advisable to operate the MIC862 under either of the following conditions: 1). a grounded load and split supplies (+/-v) 2). a single supply where the load is terminated above ground. under the above conditions, if the load is less than 20kohm and the output swing is greater than 1v(peak), there may be some instability when the output is sinking current. capacitive load when driving a large capacitive load, a resistor of 500 ? is recommended to be connected between the op-amp output and the capacitive load to avoid oscillation.
MIC862 micrel MIC862 12 march 2002 package information 3.00 2.80 0.15 0.00 1.45 0.90 1.30 0.90 3.00 2.60 0.20 0.38 0.22 1.75 1.50 10 0 0.20 0.09 1.95ref 0.65ref 0.38 0.22 sot-23-8 (m8) micrel inc. 1849 fortune drive san jose, ca 95131 usa tel + 1 (408) 944-0800 fax + 1 (408) 944-0970 web http://www.micrel.com this information is believed to be accurate and reliable, however no responsibility is assumed by micrel for its use nor for an y infringement of patents or other rights of third parties resulting from its use. no license is granted by implication or otherwise under any patent or pat ent right of micrel inc. ? 2002 micrel incorporated


▲Up To Search▲   

 
Price & Availability of MIC862

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X